China supplier CZPT Drive High Quality Foot Mounted Cycloidal Gear Motors for Screw Conveyors with high quality

Product Description

Product Description

AOKMAN DRIVE High Quality Foot Mounted Cycloidal Gear Motors for screw conveyors

Components:

1. Housing: Cast Iron
2. Gearset: Cycloid Wheel & Pin Wheel
3. Input Configurations:
Equipped with Electric Motors (AC Motor, Brake Motor, Explosion-proof Motor, Regulated Speed Motor, Hydraulic Motor)
IEC-normalized Motor Flange
Keyed CHINAMFG Shaft Input
4. Output Configurations:
Keyed CHINAMFG Shaft Output
 

Detailed Photos

Features:

1. Large reduction ratio, 1-stage ratio 9~87, 2-stage ratio 121~1849, larger reduction ratio is available by 3-stage or multistage combinations
2. High efficiency, the average efficiency is over 90%
3. Compact structure, light weight
4. Stable and reliable operation, low noise5. Long service life

Product Parameters

Parameters:

Models Power Ratio Max. Torque Output Shaft Dia. Input Shaft Dia.
1 Stage
X2(B0/B12) 0.37~1.5 9~87 150 Φ25(Φ30) Φ15
X3(B1/B15) 0.55~2.2 9~87 250 Φ35 Φ18
X4(B2/B18) 0.75~4.0 9~87 500 Φ45 Φ22
X5(B3/B22) 1.5~7.5 9~87 1,000 Φ55 Φ30
X6(B4/B27) 2.2~11 9~87 2,000 Φ65(Φ70) Φ35
X7 3.0~11 9~87 2,700 Φ80 Φ40
X8(B5/B33) 5.5~18.5 9~87 4,500 Φ90 Φ45
X9(B6/B39) 7.5~30 9~87 7,100 Φ100 Φ50

X10(B7/B45) 15~45 9~87 12,000 Φ110 Φ55
X11(B8/B55) 18.5~55 9~87 20,000 Φ130 Φ70
2 Stage
X32(B10) 0.25~0.55 121~1849 Φ35 Φ15
X42(B20/B1812) 0.37~0.75 121~1849 Φ45 Φ15
X53(B31/B2215) 0.55~1.5 121~1849 Φ55 Φ18
X63(B41/B2715) 0.75~2.2 121~1849 Φ65(Φ70) Φ18
X64(B42/B2718) 0.75~2.2 121~1849 Φ65(Φ70) Φ22
X74 1.1~3.0 121~1849 Φ80 Φ22
X84(B52/B3318) 1.5~4.0 121~1849 Φ90 Φ22
X85(B53/B3322) 2.2~5.5 121~1849 Φ90 Φ30
X95(B63/B3922) 3.0~7.5 121~1849 Φ100 Φ30
X106(B74/B4527) 4.0~11 121~1849 Φ110 Φ35
X117(B84/B5527) 4.0~15 121~1849 Φ130 Φ40(Φ35)

1 Stage Ratio: 9, 11, 17, 23, 29, 35, 43, 59, 71, 87
2 Stage Ratio: 121, 187, 289, 385, 473, 595, 731, 989, 1225, 1849

Installation:
Foot Mounted
Flange Mounted
Lubrication:

Foot-mounted Flange-mounted
1 Stage X2~X4 X5~X11 X2~X4 X5~X11
Grease Lubrication Oil-bath & Splash Lubrication Grease Lubrication Oil Pump Circulation Lubrication
2 Stage X32~X42 X53~X117 X32~X42 X53~X117
Grease Lubrication Oil-bath & Splash Lubrication Grease Lubrication Oil Pump Circulation Lubrication

Cooling:
Natural Cooling

Packaging & Shipping

Company Profile

Our Advantages

FAQ

1.Q:What kinds of gearbox can you produce for us?

A:Main products of our company: UDL series speed variator,RV series worm gear reducer, ATA series shaft mounted gearbox, X,B series gear reducer,
P series planetary gearbox and R, S, K, and F series helical-tooth reducer, more
than 1 hundred models and thousands of specifications
2.Q:Can you make as per custom drawing?
A: Yes, we offer customized service for customers.
3.Q:What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery
4.Q:What is your MOQ?
A: 1 Set

Welcome to contact us for more detail information and inquiry.
If you have specific parameters and requirement for our gearbox, customization is available.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery, Industry
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal
Hardness: Hardened
Installation: Vertical Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

screw gear

How does a screw gear impact the overall efficiency of a system?

A screw gear, also known as a worm gear, plays a significant role in the overall efficiency of a system. The design and characteristics of the screw gear can influence several factors that affect the system’s efficiency. Here’s a detailed explanation of how a screw gear impacts the overall efficiency of a system:

  • Gear Ratio: The gear ratio of a screw gear system determines the relationship between the input and output speeds. In a screw gear, the gear ratio is typically high, which means that a small rotation of the worm gear results in a larger rotation of the worm wheel. This high gear ratio allows for precise control and slow movement, but it also leads to a trade-off in terms of mechanical efficiency. The high gear ratio can result in a lower mechanical efficiency due to increased friction and power loss.
  • Friction and Efficiency: Screw gears inherently introduce more friction compared to other gear types due to the sliding motion between the worm and the worm wheel. This sliding action generates friction, which can reduce the overall efficiency of the system. The efficiency of a screw gear system depends on various factors, including the materials used, the lubrication, and the design parameters. Proper lubrication and the use of high-quality materials can help minimize friction and improve the efficiency of the system.
  • Lubrication and Efficiency: Adequate lubrication is crucial for reducing friction and maximizing the efficiency of a screw gear system. The lubricant forms a film between the contacting surfaces of the worm gear and worm wheel, reducing direct metal-to-metal contact and minimizing frictional losses. Insufficient or improper lubrication can lead to increased friction, higher operating temperatures, and reduced efficiency. Therefore, proper lubrication, including the selection of the appropriate lubricant type and viscosity, is essential for optimizing the efficiency of the system.
  • Backlash: Backlash refers to the play or clearance between the mating teeth of the worm gear and worm wheel. Excessive backlash can lead to energy loss and reduced efficiency. It can cause vibrations, impacts, and inefficient power transmission. Therefore, minimizing backlash through precise manufacturing and proper meshing of the gears is essential for maintaining high efficiency in a screw gear system.
  • Mechanical Efficiency: The mechanical efficiency of a screw gear system is influenced by various factors, including the design, manufacturing tolerances, lubrication, load conditions, and operating speed. In general, screw gears tend to have lower mechanical efficiency compared to other gear types, such as spur gears or helical gears. However, advancements in gear design, materials, and lubrication technologies have improved the overall efficiency of screw gear systems in recent years.
  • Application Considerations: The impact of a screw gear on the overall efficiency of a system also depends on the specific application requirements. Screw gears are commonly used in applications that prioritize precise motion control over high efficiency, such as in applications requiring heavy loads or precise positioning. In such cases, the advantages of screw gears, such as high gear ratios and self-locking capabilities, outweigh the potential efficiency trade-offs.

It is important to note that the overall efficiency of a system is influenced by multiple factors beyond the screw gear itself, including other components, power transmission losses, and system design. Therefore, when evaluating the efficiency of a system, it is essential to consider the collective impact of all components and factors involved.

screw gear

How do you retrofit an existing mechanical system with screw gears?

Retrofitting an existing mechanical system with screw gears, also known as worm gears, involves replacing or modifying the existing gear system to incorporate screw gears. Here’s a detailed explanation of the steps involved in retrofitting an existing mechanical system with screw gears:

  1. Evaluate the Existing System: Begin by evaluating the existing mechanical system to understand its design, function, and the specific requirements for retrofitting. Identify the type of gears currently in use and assess their limitations or shortcomings that warrant the retrofit. Consider factors such as load capacity, speed requirements, space constraints, and the desired performance improvements.
  2. Analyze Compatibility: Determine the compatibility of screw gears with the existing system. Consider factors such as available space, alignment requirements, torque and speed requirements, and the feasibility of integrating screw gears into the system. Assess whether any modifications or adaptations are needed to accommodate the screw gears effectively.
  3. Design Considerations: Based on the evaluation and compatibility analysis, develop a design plan for incorporating screw gears into the existing system. Consider aspects such as gear ratios, torque requirements, lubrication systems, mounting arrangements, and any necessary modifications to the system components or structure. Ensure that the design meets the specific performance and functional objectives of the retrofit.
  4. Select Screw Gear Components: Choose the appropriate screw gear components based on the design requirements and the specifications of the existing system. Consider factors such as gear material, tooth profile, helix angle, pitch diameter, and the number of starts. Select components that are compatible with the load, speed, and operating conditions of the retrofit application.
  5. Fabrication or Procurement: Once the screw gear components are selected, proceed with the fabrication or procurement of the required parts. This may involve manufacturing the screw gear components or purchasing them from a reliable supplier. Ensure that the components meet the specified quality standards and are suitable for the retrofit application.
  6. Installation: Install the screw gears into the existing mechanical system as per the design plan. This may involve removing the old gears and replacing them with the new screw gears or modifying the existing gear system to accommodate the screw gears. Follow proper installation procedures, ensuring correct alignment, lubrication, and torque specifications.
  7. Testing and Adjustment: After the installation, conduct thorough testing of the retrofitted system to verify its performance and functionality. Check for proper gear engagement, smooth operation, and the ability to handle the intended loads and speeds. Make any necessary adjustments or fine-tuning to optimize the performance of the retrofit and ensure its reliable operation.
  8. Documentation and Maintenance: Document the retrofit process, including design specifications, installation procedures, and any modifications made to the existing system. This documentation will be valuable for future reference, maintenance, and troubleshooting. Establish a regular maintenance schedule to inspect and maintain the retrofitted system, including lubrication, gear wear monitoring, and any recommended servicing.

Retrofitting an existing mechanical system with screw gears requires careful planning, design considerations, and proper execution. By following these steps and ensuring compatibility, proper component selection, and installation, it is possible to successfully integrate screw gears into an existing system, improving its performance, efficiency, and functionality.

screw gear

What are the applications of screw gears?

Screw gears, also known as worm gears, find a wide range of applications across various industries. Their unique characteristics make them suitable for specific purposes where precise motion control, torque multiplication, or holding position is required. Here is a detailed explanation of the applications of screw gears:

  • Machinery and Manufacturing: Screw gears are commonly used in machinery and manufacturing equipment. They are employed in gearboxes and power transmission systems to achieve speed reduction or torque multiplication. They can be found in conveyor systems, packaging machines, material handling equipment, and other industrial machinery where controlled motion and high gear ratios are necessary.
  • Automotive Systems: Screw gears have applications in automotive systems, particularly in steering mechanisms. They are used in worm and sector steering gears to convert the rotational motion of the steering wheel into the linear motion required for turning the vehicle’s wheels. The self-locking property of screw gears is advantageous in maintaining the position of the wheels after steering input.
  • Elevators and Lifts: Screw gears are utilized in elevator systems and lifts for vertical transportation. They are commonly employed in the elevator hoisting mechanism, where the rotational motion of the motor is converted into vertical movement. The high gear reduction ratio of screw gears allows for controlled and precise lifting operations.
  • Valve Actuators: Screw gears find applications in valve actuators, which are used to control the opening and closing of valves in various industries. By converting the rotational motion of an electric or manual input into linear motion, screw gears enable precise positioning of valve stems. This allows for accurate flow control in fluid systems, such as water treatment plants, oil refineries, and chemical processing facilities.
  • Robotics and Automation: Screw gears play a vital role in robotics and automation systems. They are employed in robot joints and robotic arm mechanisms to provide precise movement and positioning. Screw gears allow for controlled and repeatable motion, making them suitable for applications that require accurate manipulation, such as assembly lines, pick-and-place machines, and robotic surgery systems.
  • Camera and Optics Systems: Screw gears are used in camera and optics systems to control focus, zoom, and aperture adjustments. They are commonly found in camera lenses and telescope mechanisms. The fine and precise movement provided by screw gears enables accurate focusing and zooming, facilitating high-quality image capture and precise optical alignment.
  • Medical Equipment: Screw gears have applications in medical equipment where controlled and precise movement is necessary. They are used in surgical robots, prosthetic limbs, medical imaging devices, and other medical instruments that require accurate motion control and positioning. The self-locking characteristic of screw gears is particularly advantageous in maintaining stable positions and preventing undesired movement.
  • Security Systems: Screw gears are employed in security systems, such as combination locks and safes. They provide the mechanical advantage required to rotate the locking mechanisms and ensure secure operation. The self-locking property of screw gears adds an extra layer of security by preventing unauthorized access through reverse rotation or manipulation.

These are just a few examples of the diverse applications of screw gears. Their ability to provide high gear ratios, precise motion control, and self-locking capabilities makes them valuable in various industries where efficient power transmission, accurate positioning, and controlled movement are essential.

China supplier CZPT Drive High Quality Foot Mounted Cycloidal Gear Motors for Screw Conveyors with high qualityChina supplier CZPT Drive High Quality Foot Mounted Cycloidal Gear Motors for Screw Conveyors with high quality
editor by CX 2024-04-08

TAGs: